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2. Technical Results 

2.1 Highlight of results 
The goal of this project is to investigate the fundamental scientific issues that will 

provide a foundation for a formal design methodology for hard-real-time systems. We 
think that it is fair to say that the progress made by this group parallels and indeed 
defines much of the direction and advance in real-time software research in the last 10 

years. 
To bring a scientific discipline to real-time system design, we must develop formal 

techniques 
• to specify the real-time behavior of systems (our contributions: RTL, RTCTL, and 

APTL) 
• to query and validate the desired behavior of a design (our contributions: RTL 

deductive system, RTCTL model checker, APTL tableau verifier) 

• to ensure that a design can indeed be implemented by proper resource allocation 
algorithms (our contributions: solutions to adaptive real-time task scheduling, a fast 
admissibility test for sporadic tasks, complexity results and algorithms for the pinwheel 
scheduling problem) 

• in addition, we need to demonstrate that our theory can be translated into design 
tools that form an integral part of a design methodology (our contributions: the 
Modechart suite of tools) 

We have obtained a number of basic results in all these areas and also expanded the hor- 
izon of real-time computing in the direction of 

• rule-based systems (our contributions: the EQL, MRL real-time rule-based pro- 
gramming environment) 

• semantics and concurrency control of real-time data (our contributions: the simi- 
larity relation and its use in real-time scheduling) 

We discuss these results below. 

2.2 Technical Results 

2.2.1 Fundamental results in RTCTL and RTL 
In [4], we invented a system of temporal logic RTCTL (Real Time Computation 

Tree Logic) which extends CTL (Computation Tree Logic), a logic that has been widely 
applied to reasoning about program correctness. RTCTL melds qualitative temporal 
assertions together with real-time constraints to permit specification and reasoning at 
both qualitative and quantitative levels of abstraction. The technical device we used to 
model time is a simple time metric on a computation path, specifically the number of 
state transitions. Syntactically, this is accomplished by augmenting the usual CTL modal 
operators with an integer parameter k such that assertions can now be made to express 
bounded-time eventuality, e.g., assertions of the form: some event must happen within k 
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steps on all possible computation paths leading from the current state. We developed a 
model-checking algorithm for RTCTL which, like CTL, has complexity linear in the size 
of the RTCTL specification formula and in the size of the global state-space graph. The 
key observation that makes this possible is that the model-checking algorithm actually 
recovers not only whether an eventuality is fulfilled, but also when, based on calculating 
its rank in the Tarski-Knaster sequence of approximations. This is joint work with E. A. 
Emerson and his group. 

In contrast to temporal logic, RTL is a first-order-logic and uses no modal operators. 
As one may expect, the expressiveness of first-order-logic-based specification methods 
often leads to the undecidability of the underlying logic. An interesting problem is there- 
fore to investigate the decidability of subsets of RTL which are nonetheless sufficiently 
powerful to express practical real-time system requirements. Four basic results were 
obtained. The first result concerns a subset of RTL which does not have OR operators 
for which we showed the existence of a high-order polynomial decision algorithm. This 
algorithm is related to the decision problem of the emptiness of context-free languages. 

The second result is a negative result. We showed that the unrestricted use of 
occurrence indices, even when the occurrence arguments do not contain arithmetic 
operators, is sufficient to lead to undecidability. The proof is via reduction from 2- 
counter machine to RTL formulus. 

The third result stemed from an attempt to remedy the second (negative) result. We 
came up with a reasonable restriction on the usage of occurrence indices and showed the 
existence of a doubly exponential decision algorithm for a subset of RTL under that res- 
triction. This restriction fits in properly with the semantics of mode transitions in our 
Modechart language for specifying the control structure of real-time system. In the 
course of this investigation, we also developed an extension of RTL for modeling asyn- 
chronous real-time systems which allows explicit use of "local" clocks. This is docu- 
mented in [25]. 

The fourth result is a by-product of the third result. We used the same technique for 
deriving the third result to develop a temporal (propositional) logic for asynchronous 
real-time system which has a much simpler decision procedure than previous approaches. 
This algorithm has the same asymptotic time complexity as the decision procedure in the 
third result. This is documented in [22]. 

2.2.2 Logic for asynchronous distributed real-time systems in APTL 

The goal for this work is to answer the following question. In a distributed system 
with multiple local clocks, how do we specify timing assertions with respect to the local 
clocks in a unified way and still retain elementary decidability? For motivation, consider 
the following scenario. 

A pizza parlor has the following policy. "Any pizza order through the phone that is 
not delivered within 30 minutes will be served free." Technically, there is a serious ambi- 
guity with the statement of this policy. Specifically, on whose clock is the "30 minutes" 
measured ? Is the pizza parlor allowed to stop its clock every time before a deadline 
expires, or is the customer allowed to use her/his own watch that ticks twice as fast as the 
pizza parlor's clock? The usual "implicit" assumption is that the customer's and the 
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server's clocks are precisely synchronized. But what if this assumption does not hold (as 
is in the case of geographically distributed systems such as space-bome defense sys- 

tems)? 
The synchronized clock assumption has been adopted implicitly in previous 

research by Alur and Henzinger who used traditional (synchronous) inequality operators 
(<, =) to compare time values as read on different local clocks. They treated local clock 
readings as numbers. The truth value of an inequality comparing separate local clock 
values is determined by the usual axioms of integer arithmetic. Suppose we are in a 
pizza parlor and two clock readings were observed: 

PizzaOrder = 400 according to the customer's local clock, and 
PizzaDelivered = 430 according to the pizza parlor's local clock. 

Then the assertion "PizzaOrder+30 = PizzaDelivered" is true because 400+30 = 430. 
Alur and Henzinger actually showed that using the synchronous (arithmetic) inequality 
for comparing readings of different clocks renders the extension of their logic TPTL 
undecidable. Thus, it seems to be hopeless to retain elementary decidability in the case of 
reasoning about distributed real-time systems, at least in the context of propositional tem- 
poral logic. 

In our work, we proposed a different interpretation of inequalities involving 
separate local clocks. In some respects, the following two formulas are not equivalent. 

(1) PizzaOrder+30 = PizzaDelivered 
(2) 400+30 = 430 

First, formula (1) provides more information than formula (2) because we know that Piz- 
zaOrder=400 is a reading of the customer's clock and PizzaDelivered=430 is a reading of 
the pizza parlor's clock. This type of information is completely lost in formula (2). 
Second, formula (1) does not necessarily make sense. Since the two clocks may tick at 
completely independent rates, why should we compare the numerical values of their 
readings ? Furthermore, in formula (1), it is unclear on which clock the duration "30" is 
measured. In other words, formula (1) really compares "apples" (ticks of the customer's 
clock) with "oranges" (ticks of the pizza parlor's clock). 

Our solution is based on the following principles. (1) Local clock readings are 
treated as special temporal markers instead of numerical values. (2) Readings of dif- 
ferent clocks are distinct from each other. (3) Inequalities comparing different local 
clock readings are interpreted by means of "asynchronous inequality operators". The 
definition of asynchronous inequality operators is designed to preclude comparison of 
local clock readings on different sites against an absolute (global) time scale. This 
allows us to skirt the undecidability result of Alur and Henzinger. We have applied these 
ideas to generalize TPTL from the single clock model to the multiple clock model. The 
result is a language, APTL (Asynchronous PTL) for the specification and verification of 
hard real-time asynchronous systems ([22]). 

APTL is based on an asynchronous system model which permits definition of 
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inequalities asserting the temporal precedence of local clock readings on different sites. 
This logic can be used to specify and reason about such important properties as bounded 
drift rates of local clocks. We gave a tableau-based decision procedure for determining 
APTL satisfiability. This procedure has double exponential time complexity in the size 
(number of bits) of the input formula, we implemented an APTL verifier by incorporat- 
ing a number of optimizing heuristics into the tableau-based procedure. This verifier 
passed the benchmark programs: asynchronous railroad crossing example (20 sec.) and 
simplified HARM missile example (40 sec). 

To further gain performance, we also worked out a symbolic model checking algo- 
rithm for distributed real-time systems [26]. Unlike other approaches, we treat timing 
predicates and atomic propositions uniformly by translating everything into the mu- 
calculus. This allows us to use BDD (Binary Decision Diagram) directly for model- 
checking a real-time logic such as TCTL without resorting to extraneous techniques such 
as term-rewriting, we completed an implementation of this BDD-based technique for the 
synchronous version of APTL which we call Synchronous Real-time Event Logic 
(SREL). This implementation can be used to verify a modechart specification against a 
timing property written in SREL. Our algorithm first constructs a symbolic trace graph 
to capture the semantics of a given modechart and then performs symbolic model check- 
ing on the trace graph. As a part of the algorithm, we proposed an efficient BBD encod- 
ing scheme for solving the time representation problem. This is an important contribution 
since the utility of BDDs for timing verification has been in doubt because of the poten- 
tial for exponential blow-up in the BDD representation of timing properties. Our encod- 
ing scheme produces BDDs whose size are provably O(n) for timing inequalities involv- 
ing n-bit time values. We are able to do this by observing that the arithmetic inequalities 
of interest in real-time systems have at most two variables (comparing two event 
occurrences) and involve only "counting" operations. 

We incorporated our BDD encoding scheme for time representation into the SMV 
system (version 2.3) from Carnegie-Mellon University. For the benchmark programs that 
we have run our augmented version of SMV on, we have been able to achieve one to two 
orders of magnitude in speedup and space saving when compared to the direct implemen- 
tation of timing and event counting functions by integer operations provided by the 
unaugmented SMV system. The details of these results are described in the paper "Sym- 
bolic Model Checking for Event-Driven Real-Time Systems" which will appear in RTSS 
'93. 

2.2.3 Load adjustment in adaptive real-time systems 
Most extant work in real-time resource allocation assumes that a set of real-time 

processes have fixed timing parameters, e.g., periods, deadlines, minimum separation. 
The resource scheduling problem is to determine whether a scheduler exists (the feasibil- 
ity problem) or whether a given scheduling policy can meet the timing requirements of 
the set of processes (the schedulability problem). Although much progress has been made 
in regard to both the feasibility and schedulability problems, there are relatively few 
results in the case where the processes may change their timing parameters in reaction to 
the environment. Such cases may occur for a number of reasons: (1) A process may be 
used to monitor a physical object which demands different amounts of attention 
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depending on the state of the external world. (2) A process may be created or deleted in 
reaction to the arrival or departure of a physical object and there is no complete a priori 
knowledge of the objects. (3) A process may be reallocated (appears as a new process) to 
run on a different processor because another processor has broken down. In our work, we 
showed that the real-time resource allocation problem can be reformulated to model the 
adaptive nature of the processes so as to handle dynamic objects (case 1), overload 
recovery (case 2) and fault tolerance (case 3). In particular, we introduced the ■ 
"configuration selection problem" and gave a PTIME solution to a variant of the problem 

([17]). 
To formulate the scheduling problem where timing parameters may vary with time, 

we introduce the notion of an "adjustable periodic process" which is a set of pairs: {(c_l, 
P_l) - (c_k, p_k)}. Each pair in this set is called an "adjustment candidate" of the adju- 
stable periodic process. Each adjustment candidate of a adjustable periodic process P is a 
candidate for load adjustment, i.e., we can select any one of the pairs in P to be used as 
input timing parameters to the run-time scheduler. A configuration C of a set M of n 
dynamic periodic processes is a set of n pairs {(c_l, p_l),... (c_n, p_n)} such that each 
pair is an adjustment candidate of exactly one of the dynamic periodic processes in M. 
Each configuration represents a set of periodic processes with fixed parameters. Not all 
configurations are schedulable. The configuration selection problem is to select among a 
list of configurations one which is is schedulable. 

To tackle the configuration selection problem, we have sharpened a result due to 
Liu and Layland concerning a schedulability test of periodic processes by a fixed priority 
scheduler Specifically, two process transformations are introduced for the purpose of 
deriving a bound for the achievable utilization factor of processes whose periods are 
related by harmonics. This result is then generalized so that the bound is applicable to 
any process set, and an efficient algorithm to calculate the bound is provided. Based on 
this result, we presented a solution to the configuration selection problem under the res- 
triction that a fixed priority scheduler is used at run time and task utilization must not 
exceed the achievable utilization factor. We further showed that a generalization of the 
configuration selection problem (the period assignment problem) is NP-hard and also 
gave efficient approximation algorithms for solving this problem by exploiting known 
algorithms for solving the set covering problem. 

2.2.4 Scheduling of Sporadic Task Systems 
Sporadic tasks were introduced by Mok in his Ph.D. dissertation to model external 

interrupts. Clearly one cannot guarantee scheduling for interrupts that can occur arbi- 
trarily frequently. The idea of assuming a minimum delay between invocations was 
introduced so that scheduling guarantees might be made while retaining a useful model 
of something in the real world. In cases where this assumption is not realistic, the run- 
time scheduler must be able to deduce when a sporadic task request cannot be met. This 
is trivially accomplished by monitoring when a deadline is actually missed, but by then it 
may be too late to perform certain overload recovery procedures. So the question is 
whether we can detect an overload condition way before it happens. Ideally, we would 
like to detect whether the addition of a sporadic task request can lead to overload at the 
time the request arises. Our collaboration with L. Rosier's group resulted in necessary 



and sufficient conditions for a sporadic task system to be feasible. These conditions can- 
not, in general, be tested efficiently (unless P = NP). They do, however, lead to a feasi- 
bility test that runs in efficient pseudo-polynomial time for a very large percentage of 
sporadic task systems. This opens up the possibility of a practical algorithm for early 
detection of processor overload and for dynamic load adjustment. This work is reported 
in [11]. 

Our investigation of the periodic maintenance scheduling problem was originally 
motivated by our study of sporadic tasks scheduling. A sporadic task is characterized by 
an ordered triple T=(c,d,p) where c is the required computation time and d is the dead- 
line measured from request time, and p is the minimum separation. If t and t' are two 
invocation times, then | t-f |>p. For example, if T=(l,10,10) then T may be invoked at 
times 8 and 18, but not at times 8 and 17. In hard real-time systems, we must deal with 
worst-case combinations of sporadic task invocations. This is generally done by 
transforming them into periodic tasks such that a schedule for the transformed system is 
also a schedule for the original system. Mok gave one such transformation in his Ph.D. 
dissertation. We presented a paper [5] which answered a number of the decision prob- 
lems related to the simplest case of the sporadic task problem: the pinwheel scheduling 
problem. It was pointed out to us by Professor C. L. Liu that in the case of dense task 
sets, our problem is similar to that of periodic maintenance. In earlier work, Liu gave a 
sufficient but not necessary condition for an instance of the periodic maintenance prob- 
lem to be schedulable. We extended Liu's work on periodic maintenance in several 
major ways. 

The k -server, k>\, periodic maintenance problem consists of« "machines" each of 
which must receive maintenance at fixed intervals from one of k servers each of which 
can service only one machine at a time. A "slot" is defined as the time needed for one 
server to service one machine. A k-server schedule 5 for an instance B = {bx,b2,...,bn } 
is an infinite sequence of k-multisets over {l,2,...,n ,blank } where blank can be repeated 
within a multiset but l,...,n cannot, such that successive occurrences of i are exactly bt 

slots apart. In [5], we provide a comprehensive complexity analysis of the decision prob- 
lems concerning periodic maintenance. We show that the k -server periodic maintenance 
scheduling problem is NP-complete in the strong sense; that the periodic maintenance 
schedule verification problem CoNP-complete in the strong sense. We also obtained 
positive results in the following categories. When each maintenance interval is a multiple 
of all shorter intervals, the decision problem is in PTIME. When an instance consists of 
only two distinct numbers, the decision problem is in PTIME. For both categories, we 
showed that the single-server scheduling problem is in S-P-C, i.e., for each instance of 
these problems, there exists a PTIME program generator whose output is a single-server 
scheduler that operates in constant time per scheduling decision made. This result can be 
generalized to the multiple server case for the first category. This is joint work with L. 
Rosier and his group. 

2.2.5 EQL and Response Time Analysis: 
An EQL program has a set of rules for updating variables which denote the state of 

the physical system under control. The firing of a rule computes a new value for one or 
more state variables to reflect changes in the external environment as detected by sensors. 



Sensor readings are sampled periodically or generated by interrupts. Every time sensor 
readings are taken, the state variables are recomputed iteratively by a number of rule 
firings until no further change in the variables can result from the firing of a rule. The 
equational rule-based program is then said to have reached a fixed point. Intuitively, rules 
in an EQL program are used to express the constraints on a system and also the goals of 
the controller. If a fixed point is reached, then the state variables have settled down to a 
set of values that are consistent with the constraints and goals as expressed by the rules. 
EQL differs from the popular expert system languages such as OPS5 in some important 
ways. Whereas the interpretation of a language like OPS5 is defined by the recognize-act 
cycle, the basic interpretation cycle of EQL is defined by fixed point convergence. We 
believe that the time it takes to converge to a fixed point is a more pertinent measure of 
the response time of a rule-based program than the length of the recognize-act cycle. 

Even though the problem of deciding whether a EQL program has bounded 
response time is decidable whenever there is a finite state-space representation for the 
program, we can show that the decision problem is PSPACE-hard [7]. To combat the 
combinatorial state space explosion, we have developed a general iterative strategy to 
determine if a EQL has bounded response time. This strategy works by identifying 
independent subsets of rules in the EQL program, matching these subsets with special 
forms and if successful, rewriting the program to make use of the fact that some variables 
have been established to be stable. The power of this general strategy obviously depends 
on the generality of the special forms employed. We have developed three more special 
forms. Special form B has been programmed into our analysis tool, and will be described 
here to illustrate this work. First, we need a few definitions. 

L   = {v | v is a variable that appears in the LHS of rule a } 
Ra = {v | v is a variable that appears in the RHS of a rule a } 
T = {v | v is a variable that appears in the enabling condition of rule a } 

Given two rules a and fc, let xt, i=l,...,n be variables in the intersection of the sets 
La and Tb. Rule a is said to potentially enable rule b if the assignment statement in rule 
/may assign values the variables in {xt} such that there is at least a combination of 
values for the variables in Tb but not in La which enables rule b. 

The enable-rule (ER) graph of a set of rules is a labelled directed graph G=(V,E) 
where V is a set of vertices each of which is uniquely labelled by a rule number i, and E 
is a set of edges such that there is an edge from vertex a to vertex b if rule a potentially 
enables b. 

A set of rules are said to be in special form B if all of the following conditions hold: 
(1) For every rule, only constant terms are assigned to all the variables in L. (2) All the 
rules are compatible pairwise (i.e., either their enabling conditions are mutually exclusive 
or they must not assign different values to the same variable). (3) For each cycle in the 
ER graph of the rules, no two rules that appear in the same cycle may assign different 
values to the same variable, even if their enabling conditions are mutually exclusive. 

We have proved that a EQL program whose rules are in special form B will always 
reach a fixed point in a bounded number of steps. We have also developed an efficient 



■10- 

algorithm for checking whether a set of rules are in special form B which runs in 
0(MAX(n2,mxMAX(n,e))) where n and e are respectively the number of vertices and 
edges in the ER graph. Special form B was needed to analyze the NASA Space Station 
modules that MITRE provided to us. This is documented in [8]. 

To enhance the applicability of our analysis tool, we completed the design of 
Estella, a facility for EQL programmers to customize the analyzer by specifying 
application-specific knowledge. Estella was used to verify the boundedness of the 
response time of some NASA applications (see [13]). 

Significant advance was also obtained in work on the more advanced language 
MRL which uses EQL as its "core language". We have improved the fixed point detec- 
tion and timing analysis algorithms MRL so that it can be used to handle those MRL pro- 
grams with non-constant assignments. This is achieved by extending the AM (access- 
modify) graph representation to include semantic information of the rules. The extension 
preserves all the properties, including the the "transfer principle" which is vital to our 
analysis algorithms. The speed of the fixed point detection algorithms was improved 
dramatically by designing a much more efficient compatibility detection algorithm which 
has been a bottleneck in the performance factor ([20]). 

In applying MRL tools to an application from NASA Johnson Space Center, we 
discovered an inevitable limitation of the fixed-point detection algorithm. The limitation 
is due to the lack of knowledge of users' assumption on input data. Therefore, we under- 
took to improve the fixed-point detection algorithm by allowing users to specify 
application-specific information about the program which would otherwise be unobtain- 
able. We have included two types of semantic information: functional dependency and 
data pattern specification. This work is reported in [19]. 

2.2.6 Semantics and concurrency control of real-time databases 

While past work in database performance stress mostly on throughput, there is 
increasing interest in the performance of transaction systems that have significant 
response time requirements. These requirements are usually posed as hard or soft dead- 
lines on individual transactions, so that a concurrency control algorithm must attempt to 
meet deadlines as well as preserve database consistency. There have been a number of 
analytic and simulation studies on the performance of scheduling algorithms to meet 
deadlines. In these studies, database consistency is preserved by enforcing serializability. 
However, our interaction with Navy personnel has convinced us that serializability is 
often too strict a correctness criterion for real-time applications, where the precision of 
an answer to a query may still be acceptable even if serializability is not strictly observed 
in transaction scheduling. Obviously, violation of serializability must be justified in the 
context of the semantics of the application domain. We explored a weaker correctness 
criterion for concurrency control in real-time transactions, namely, the notion of "similar- 

ity" [23]. 
Similarity is a binary relation on the domain of a data object. Every similarity rela- 

tion is reflexive and symmetric, but not necessarily transitive. Different transactions can 
have different similarity relations on the same data object domain. Two views of a tran- 
saction are similar iff every read event in both views uses similar values with respect to 
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the transaction. We say that two values of a data object are similar if all transactions 
which may read them consider them as similar. In a schedule, we say that two event 
instances are similar if they are of the same type and access similar values of the same 
data object. We say that two database states are similar if the corresponding values of 
every data object in the two states are similar. A minimal restriction on the similarity 
relation that makes it interesting for concurrency control is the requirement that it is 
preserved by every transaction, i.e., if a transaction maps database state s to state t and 
state s' to t', then t and t' are similar if s and s' are similar. The concept of similarity is 
used to extend the usual correctness criteria for transaction scheduling: final-state, view, 
conflict serializability to their counter-parts of final-state Delta-serializability, view 
Delta-serializability, and conflict Delta-serializability. The main difficulty in these exten- 
sions is that similarity is in general not a transitive relation. This poses a limit on how 
events can be swapped in a schedule and complicates the usual notion of equivalence 
among schedules. Several technical results are needed to justify a notion of equivalence 
that permits a restricted form of event swapping. 

It has been recognized by many researchers that the notion of serializability is too 
strict a correctness criterion for concurrency control in accesssing real-time data. In 
avionics software, for example, the precision of an answer to a query involving sensor 
data is often acceptable as long as the data is sufficiently timely, even though updates are 
sometimes performed in violation of the usual serializability criterion. Instead of 
read/write locks, a "cyclic executive" is routinely used in these applications to enforce a 
set of timing constraints on data access which in turn guarantees data consistency, the 
usual database locking protocols being too inefficient for the purpose. Obviously, viola- 
tion of serializability must be justified in the context of the semantics of the application 
domain. In our RTSS92 paper, we introduced the concept of similarity which is a binary 
relation on the domain of a data object. We reported how the similarity concept can be 
used to justify the legality of the non-serializable access of sensor data common in cyclic 
executives. 

Having thus provided a semantic foundation for accessing real-time data, an obvi- 
ous question is how the notion of similarity relates to real-time transaction scheduling. 
Intuitively, we expect significant gains in scheduling flexibility since more write events 
can be deferred and some read events can be scheduled AHEAD of the latest write 
events. We started investigating quantitatively how the additional flexibility in read/write 
event scheduling made available by similarity considerations may relax the real-time 
scheduling problem. In a paper which appeared in RTSS '93, we examine a class of 
scheduling policies which we call Similarity Stack Potocols (SSP) whose correctness is 
justified by similarity. The SSP protocols can significantly improve the schedulability of 
real-time transaction workloads on multiprocessor systems. We have obtained both 
analytical utilization bounds for the SSP protocols as well as demonstrated their real-time 
performance advantages in simulation experiments. We use as our workload the real-time 
benchmark suite, "realistic" numbers from the NRL software model for the HARM mis- 
sile as well as statistically generated task sets. Our performance studies are fundamen- 
tally different from past reports on analytic and simulation results for meeting transaction 
deadlines in that unlike previous studies, we do not assume serializability as the correct- 
ness criterion for database consistency. 
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We have also completed the implementation of a preliminary version of a Real- 
Time Object Management Interface package which utilizes some of these ideas on the 
Intel iRMK real-time kernel. 

2.2.7 The Modechart Design Language and Verifier 

The methodology for verifying properties of systems specified in Modechart was 
first presented in the paper "A Method for Verifying Properties of Modechart 
Specifications", published in Proceedings 9th RTSS, Huntsville, AL, 1988. That paper 
introduceds a method for verifying certain types of RTL formulas with respect to 
modechart specifications, based on the notion of a computation graph. A computation 
graph can be viewed as the modechart analog of a reachability or invariance graph. The 
technique described in the paper uses two steps. First the computation graph for the 
given modechart is generated, and then the decision procedure appropriate to the type of 
formula being verified is applied to the graph to determine if the formula is valid with 
respect to the graph (and so for the specification). 

There were three major areas that were not addressed by the 1988 paper. The first 
of these is a problem known as "splitting". The problem arises when trying to determine 
which events are associated with a point in the computation graph. The solution (which 
gives the problem its name) is to split the children of a point based on whether or not 
they inherit the events of their parent. The second problem is known as the disabling 
problem. This problem deals with how to enforce the timing constraints imposed by tran- 
sitions that have been disabled before their deadlines. The solution is to impose the 
deadlines of disabled transitions on the transitions that disable them. The two problems 
are related because splitting also imposes additional timing constraints on points in the 
computation graph. The disabling problem also provides the basis of the technique for 
dealing with modecharts with sophisticated hierarchical structure. Two other loose ends 
leftover from the 1988 paper are practical implementation issues for formula verification, 
and formal proofs for some of the main results, in light of the new solutions to the split- 
ting, disabling, and hierarchical problems above. All of these are addressed in a paper 
that appeared in 1990 Real-Time Systems Symposium [10]. 

The first version of the first generation verifier was implemented in June of 1989. 
Since that time the initial program has been considerably enhanced and updated to 
include the splitting and disabling solutions mentioned in the preceding paragraph. Since 
then, numerous improvements have been made. Some of these improvements and the 
algorithms used in the verifier, are the subject of the paper "Implementing a Verifier For 
Real-Time Systems" which appeared in RTSS90. 

Some general semantic issues that concern Modechart are discussed in the paper 
"Clairvoyance, Capricious Timing Faults, Causality, and Real-Time Specifications" [18]. 
The first deals with the semantics of timing constraints, and the second with the seman- 
tics of event constraints. The usual method of enforcing timing constraints in the seman- 
tics of a specification is by simply declaring that all timing constraints are satisfied. This 
approach breaks down in the presence of timing constraints that can not be met, in partic- 
ular, it can result in the need for clairvoyance on the part of an implementation to avoid 
such constraints in order to accurately reflect the formal semantics. The solution to the 
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problem is for the semantics to allow computations that encounter unsatisfiable timing 
constraints, but which halt on doing so. This not only eliminates the need for clairvoy- 
ance, but also produces more realistic behavior and allows for reasoning about the 
behavior of the specified systems in the period leading up to the failure. 

The second area of concern is an apparent loss of causality due to event constraints 
in the absence of interleaving. If the semantics of the specification do not use interleav- 
ing to model concurrency, so that all events which occur at the same time are treated as 
simultaneous, and if an event can be caused by an event simultaneous with it, it may be 
possible for an event to cause itself. As an example, consider a modechart transition with 
its own transition event as its triggering condition. At any time the transition occurs it is 
enabled, and at any time it does not occur it is not enabled. This is a degenerate example 
in that the circularity is immediate and unavoidable, but this need not be the case. Also, 
even the degenerate example possesses computations that obey the intuitive notion of 
causality. Those computations of such a system where there is a loss of causality are 
termed non-linearizable, because the events in the computation can not be totally ordered 
in a way such that each event is caused by events strictly before it. The paper provides 
methods both for generating non-linearizable computations and for modifying the syntax 
and semantics of a specification language to avoid them. 

Both of these issues were first encountered in investigating properties of the 
Modechart specification language. In particular the atomicity of actions leads to the 
necessity for clairvoyance if unsatisfiable timing constraints are to be avoided. Likewise, 
as previously indicated, certain transition conditions can give rise to non-linearizable 
computations. 

The other Modechart related work has been to clarify, correct, and justify several 
aspects of the semantics and syntax that were unclear or incorrect, largely in response to 
queries from the A-7 group at NRL, in particular Bruce Labaw and Connie Heitmeyer. 
This has been reflected in part in Paul Clement's new Modechart Quick Reference Guide 
[47]. Substantial implementation effort was undertaken in response to NRL requests and 
falls into three broad categories. The first category is to improve the performance and 
user interface of the current program. Accordingly, the current version of the verifier, 
"verifyw" now accepts the new standard ascii modechart format, and has been integrated 
into Paul Clements "modechart" program, a combined user interface that integrates all of 
the current SARTOR/Modechart software. Similarly, the current version of the program 
has been restructured to simplify modifiability, and to enable all of the routines to use a 
more efficient clustering algorithm for calculating distances. The second category is to 
increase the range of Modechart specifications which the verifier can accept as input. 
The current version of the program has been extended so that almost all legal transition 
conditions have been implemented, as have actions and state predicates. In the process 
of doing so, three technical problems associated with actions and certain types of transi- 
tion conditions have been addressed, and are discussed in the memos "Adding Actions to 
Computation Graphs" and "Angle Brackets and the Tile Problem". The last category is 
actual functionality increases. Verifyw now can check for persistent points, busy-wait 
modes, and implements three special cases of two interval formulas for mode inclusion 
and exclusion which can be checked efficiently. Preliminary work in attempting to gen- 
erate constant values (bounds) in timing constraints and formulas has also been done, 
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some of which has been implemented, as requested by NRL personnel. 
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3. Research Transitions and DoD Interactions 

3.1 Naval Research Laboratory 
We have consistently collaborated with the Naval Research Laboratory in the 

evaluation of Modechart and Modechart-related tools (especially the verifier), and in the 
implementation of the advanced Modechart prototype. Numerous trips were made by 
Paul Clements to the Naval Research Laboratory where researchers there are exploring 
the use of Modechart in a Navy embedded hard-real-time engineering environment. 
NRL personnel have been briefed on the re-implementation effort, and are continuing 
joint investigations. Their contributions have included, to date, software to implement 
other abstract data types useful in Modechart processing (sets, lists, modes), and more 
importantly, the sponsoring of an exhaustive survey of object-oriented data base manage- 
ment systems that would be appropriate to host a re-tooled Modechart environment. 

NRL has also investigated methodological issues associated with using Modechart 
in a real development environment. Their preliminary work, which is being explored in 
conjunction with UT personnel, addresses how a "canonical" Modechart for a hard-real- 
time embedded system such as an avionics program should be structured for maximum 
flexibility. In cooperation with NRL, we have drafted a specification of a Navy embed- 
ded real-time software system using Modechart. The system is the HARM Low-Cost 
Seeker (HLCS) [29], a version of the Navy's HARM anti-radar missile with upgraded 
avionics, developed at China Lake, California. HLCS is an example of a state-of-the-art, 
parallel-processing, hard-real-time, embedded, *actual* Navy system, and the modeling 
effort is designed to test Modechart's usefulness on a non-contrived application. 
Modechart's scaleability, its ability to model systems with a priority-based pre-emptive 
scheduler, the ability of its supporting analysis tools (verifier, simulator) to deal with 
problem spaces of nontrivial size, and methodological issues involving management of 
complexity are all being evaluated. 

The Modechart simulator has also been used in the HLCS specification effort. This 
marks the first time that the simulator has been used in a "production" capacity, and 
reviews of its performance are very positive. The Modechart simulator now has action 
semantics added to its repertoire. Work on the new scenario language, which may be 
considered a new front end specification language for Modechart, continues apace. A 
fully automatic scenario-to-Modechart translator has been implemented, and is being 
tested and checked out on three completely real-world examples (the A-7 aircraft pilot 
data panel protocols, the engine start procedures for the P-3 Orion aircraft, and the signal 
processing software for HLCS, described above). 

In 1979 the Naval Research Laboratory published a requirements specification for 
the A-7E aircraft. This specification relied on finite-state machine (represented as 
tables) to define the outputs, as a function of system state, required by the avionics 
software. The method was found to have clearly defined completeness and consistency 
rules, and in many ways has made the task of specifying real-time software much easier. 
The requirements specification was one of the most successful (and widely transferred) 
products of NRL's Software Cost Reduction project, and recent work at UT has 
identified an algorithm for translating NRL-style tabular specifications into modecharts. 
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The NRL style is better suited for displaying certain types of finite-state- based 
requirements; the equivalent modechart representation is much less concise. Therefore, 
by adding the option of specifying modecharts in the NRL form, users are provided with 
an input paradigm better suited and more concise for certain types of requirements. 
However, because we can translate automatically into Modechart and therefore into RTL, 
none of the semantic properties of Modechart is lost. We have therefore added the 
semantic rigor of Modechart to the expressiveness of the NRL format, and enriched the 
Modechart environment. 

3.2 Naval Weapons Center, China Lake 

P. Clements visited the Naval Weapons Center (NWC) at China Lake, California, in 
April and July of 1991. While there, he consulted with personnel to learn about require- 
ments and requirements specification problems for hard-real-time embedded systems that 
are currently fielded by the Navy. He spoke with Bob Westbrook (Avionics), John Sey- 
bold (HARM Low-Cost Seeker), Ken Trieu (F/A-18), Bob Page (Missile Software), and 
others. As a result of his visit, an experiment was initiated at UT to apply Modechart- 
related tools, especially the design of a "scenario specification" language to the engine- 
start procedure of the Navy's P-3 Orion aircraft. 

A. Mok and P. Clements visited the Naval Weapons Center (NWC) at China Lake, 
California, in April of 1992. While there, Mok gave 4 hours of lecture to NWC person- 
nel concerning recent advance in our research. He consulted with Navy personnel to dis- 
cuss real-time system design issues. Clements discussed his work on the HARM with 
NWC personnel. 

3.3 Industrial collaboration 
In technology transfer to industry, we have received support and collaborated with 

personnel of Texas Instruments Corporation. R. H. Wang visited TI and ported some of 
our timing analysis tools for rule-based programs to the Central Research Laboratory of 
TI at Dallas. Wang was able to apply the tools to analyze the Threat Assessor program, a 
threat assessment expert system for the D/NAPS system presented to him on the spot. 
The Threat Assessor program uses fuzzy logic to compute a lethality value of a threat to 
an aircraft. The boundedness of the response time of this program was verified. 

Two rule-based modules of the Space Station Expert System: (1) the Integrated 
Status Assessment Expert System (ISA), and (2) the Fuel Cell Monitoring Expert System 
(FCE) were obtained from MITRE and translated into EQL. A report of our analysis has 
been written and we have been invited by MITRE to give a presentation of our results. 

As a move towards experimentation of full-scale real-time expert systems, we colla- 
borated with Browne et al [35] in the implementation of the MERCURY expert system 
language. MERCURY is modelled after the experimental language MRL which we have 
developed in collaboration with Professor D. Miranker's group at the University of Texas 
Advanced Research Laboratory (ARL). A prototype of MERCURY was completed and it 
is being used by software engineers at ARL to develop distributed tactical simulation 
systems for the U.S. Army. 
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We also initiated a collaboration effort with General Electric Corporation. We 
designed a simplified diagnostic model [45] for the local reactivity controller of the 
Advanced Liquid Metal Reactor plant (a key commercial development of the GE 
Advanced Reactor Programs) through discussing with GE engineers. This model was 
programmed in MRL and analyzed by our timing analysis tools. GE engineers were 
sufficiently impressed that arrangement is being made for us to apply our tools to a 
significant subsystem of their project. Unfortunately, the GE effort was discontinued 
when they failed to obtain funding from DOE to continue the work. 



-18- 

4. Software and Hardware Prototypes 

Modechart: 
Our Modechart verifier has been integrated with the toolset "MT", carried out in 

collaboration with NRL. The synergistic capability of MT is described in the paper "MT: 
A Toolset for Specifying and Analyzing Real-Time Systems" which will appeared in 
RTSS '93. MT is available from NRL. 

TimetooLTTAL: 
Timetool/TAL is an interactive general code analyzer for estimating the minimum 

and the maximum execution time of the input source code. Previously, we have only a 
Sun window user interface for Timetool. Under this grant, we built an X window user 
interface for Timetool. This implementation will contribute greatly to the portability of 
this tool. We are still receiving requests for the timing analysis tool set: timetool/tal 
which we developed in 1989. 

EQL response time analyzer: 
A timing analyzer for EQL has gone through several generations of improvement 

and will be released to the general public through internet access. 
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5. Awards and Honors 

• A. Mok is the recipient of a $100,000 Faculty Fellowship at the University of Texas at 
Austin for the years 1989-1994. 

• A. Mok served on the program committees of 12th Real-Time Systems Symposium, 
San Antonio, December 1991, 9th IEEE Real-Time Operating Systems and Software 
Workshop, Pittsburg, May 1992, Second International Workshop on Responsive Com- 
puter Systems, Tokyo, October 1992, 3rd Workshop on Responsive Computer Systems, 
New Hampshire, October 1993, 13th Real-Time Systems Symposium, Phoenix, 
December 1992, 1992 International Computer Symposium, Tai-Chung, Taiwan, 
December 1992. 

• A.K. Mok was elected Vice Chairman of the IEEE Technical Committee on Real-Time 
Systems, 1993-1994. 

• A. Cheng obtained his doctorate in computer science in August, 1990. 

• S. Sutanthavibul obtained his doctorate in computer science in May, 1991. 

• C. K. Wang obtained his doctorate in computer science in May, 1992. 

• Farn Wang obtained his doctorate in computer science in May, 1993. 

• Sanjoy Baruah obtained his doctorate in computer science in August 1993. 

• Paul Clements obtained his doctorate in computer science in May 1994. 
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